
Solution by Team Embryo (Third Place) for
the SIGMOD Programming Contest 2025

Hangrui Zhou, Yiming Qiao, Shaoxuan Tang

Contact: Hangrui Zhou · 596082417@qq.com

Task: Implement an In-memory Join Pipeline Executor and Operators

Solution: Compact, Clean, and Competitive — Just 2300 Lines of Code

Vectorized & Push-Based Execution

• Build a high-performance join pipeline executor that processes in-memory base tables using a given join plan.

• The solution must demonstrate strong end-to-end performance across heterogeneous hardware platforms, including Intel,

AMD, ARM, and Power.

• Implementations can leverage multi-threading, SIMD, join reordering, Bloom filters, and other hardware-aware

optimizations -- but must use the same codebase for all platforms.

• The final output is a fully materialized in-memory result table, and only the total runtime is measured.

• Vectorized & Push-Based Execution: Efficient tuple processing with high CPU utilization and cache locality.

• Custom Hash Table: Inspired by DuckDB, using salt-based hashing and lightweight Bloom filters for fast key matching.

• Min-Max Filter Pushdown: Early filtering for range conditions to skip irrelevant data efficiently.

• Data Chunk Compaction: Reduce data movement and processing cost by compacting sparse vectors [Qiao, Zhang].

• Lock-Free Multi-threading: Fast and contention-free parallelism across pipeline stages.

• Lean Memory Management: Minimal allocation overhead with simple, allocator-aware design.

Salty Hash Table

Data Chunk Compaction Implicit SIMD Optimization

• Filters and joins often produce Small chunks.

• It leads to:

 ✗ High per-chunk overhead; ✗ Poor SIMD/cache utilization.

• Solution: Logical Compaction.

Ref: Data Chunk Compaction in Vectorized Execution. SIGMOD’25.

• Processes data in batches to reduce per-tuple overhead.

• Minimizes function calls by operating on entire vectors. Well-

suited to modern hardware, leveraging wide SIMD units.

Ref: MonetDB/X100: Hyper-Pipelining Query Execution. CIDR’05.

• Combines linear probing and key-based chaining to handle collisions

effectively. On collision, inserts into the next free slot and links it to the

same-key chain.

Ref: Adaptive Factorization Using Linear-Chained Hash Tables. CIDR’25.

• We do not use explicit SIMD intrinsics (e.g., AVX, NEON).

• Instead, our vectorized and tight loop structure allows modern

compilers to auto-vectorize.

• Delivers performance gains without sacrificing portability.

• Tight loop also aligns with Group Prefetch.

Ref: Improving Hash Join Performance through Prefetching. ICDE’04.

