Solution by Team Embryo (Third Place) for

the SIGMOD Programming Contest 2025

Hangrui Zhou, Yiming Qiao, Shaoxuan Tang

Task: Implement an In-memory Join Pipeline Executor and Operators

» Build a high-performance join pipeline executor that processes in-memory base tables using a given join plan.

* The solution must demonstrate strong end-to-end performance across heterogeneous hardware platforms, including Intel,

AMD, ARM, and Power.

» Implementations can leverage multi-threading, SIMD, join reordering, Bloom filters, and other hardware-aware
optimizations — but must use the same codebase for all platforms.

* The final output is a fully materialized in-memory result table, and only the total runtime is measured.

Solution: Compact, Clean, and Competitive — Just 2300 Lines of Code

* Vectorized & Push-Based Execution: Efficient tuple processing with high CPU utilization and cache locality.

+ Custom Hash Table: Inspired by DuckDB, using salt-based hashing and lightweight Bloom filters for fast key matching.
» Min-Max Filter Pushdown: Early filtering for range conditions to skip irrelevant data efficiently.

» Data Chunk Compaction: Reduce data movement and processing cost by compacting sparse vectors [Qiao, Zhang].
* Lock-Free Multi-threading: Fast and contention-free parallelism across pipeline stages.

* Lean Memory Management: Minimal allocation overhead with simple, allocator-aware design.

Vectorized & Push-Based Execution Salty Hash Table
gggoo Insert record
<><> W.E

Instructions
S e pr |)) (o prto0 > D) I8
p—— P ox1 ptr(kz) > [2Hvs_
k V1

Normal

Instructions

Insert into

0x2 0x2
next empty

slot ex3 ptr(ks) |71 ks | v, |21 ks | v, a0x3 ptr(Ks) ks | v,
B Instructions ﬁ‘ — —
L A 7
* Processes data in batches to reduce pertuple overhead. » Combines linear probing and key-based chaining to handle collisions
* Minimizes function calls by operating on entire vectors. Well- effectively. On collision, inserts into the next free slot and links it to the
suited to modern hardware, leveraging wide SIMD units. same-key chain.

Ref: MonetDB/X100: Hyper-Pipelining Query Execution. CIDR’05. Ref: Adaptive Factorization Using Linear-Chained Hash Tables. CIDR’25.

Data Chunk Compaction Implicit SIMD Optimization

of Chunks # of Tuples b 100, code0
G DA S
H]H} ___8000_____ 1_Q,QQ0__2_1;2_5_tEBIESZEhP2§¥./ NG R codel
400 30,000 P @ 9 d 122} codez
L : : code R S T
[[E '________________________T.T‘/" \ § ‘ § Ostage 3333 code3
= IR e | v o~
10 15000 /A L@ T memory 00,4
B \ | operation 1,
A A o9 L . LIt
____10_____Z- 20.000_ ‘ @ I 22,
- R 5. 3333
- We do not use explicit SIMD intrinsics (e.g., AYX, NEON).
» Filters and joins often produce Small chunks. * Instead, our vectorized and tight loop structure allows modern
* It leads to: compilers to auto-vectorize.
X High per-chunk overhead; X Poor SIMD/cache utilization. * Delivers performance gains without sacrificing portability.
 Solution: Logical Compaction. * Tight loop also aligns with Group Prefetch.

Ref: Data Chunk Compaction in Vectorized Execution. SIGMOD’25. Ref: Improving Hash Join Performance through Prefetching. ICDE’04.

Contact: Hangrui Zhou - 596082417(@qgq.com

