m SIGMOD 2025 Programming Contest — Team JobSeeking
RIVERSIDE Xiangyun Ding Letong Wang

Overview Input/Output
e Qur team e [nput Data Format
o Team name: JobSeeking, from University of o ColumnarTable -> Column -> Page
California, Riverside o A tree structure for join order

o Final result: 5'th place!

o We presents a high-performance, multi-threaded
query engine designed for the SIGMOD 2025
Programming Contest.

e Parallel Column Read

o Parallel prefix sum: we first perform a parallel scan over pages
to sum up the number of rows, which gives each thread the
precise starting offset in the array.

e Key techniques o I/O cache: a column cache, keyed by a hash of the column's
> A work-stealing scheduler for shared-memory page content, stores pointers to already-read columns. This
multi-core parallelism cache is crucial for performance.
o Highly parallelized 1/O modules for rapid data e Two-Phase Parallel Writing

Ingestion and emission

o Skew-aware parallel hash join algorithm based
on parallel integer-sort

o Custom memory allocators

o Counting Phase: Determine the number of pages required for
each partition of the output.

o Writing Phase: Allocate memory for pages, then format and
write data partitions into the appropriate pages in parallel.

Skew-Aware Parallel Hash Join
e Building the hash table: heavy/light Key partitioning via parallel integer-sort 1l

o Heavy key identification: by sampling the keys and counting their frequencies, we identify heavy keys that appear more often
than a dynamic threshold.

o For heavy keys, we use a hash table to store them with their indices.

o Light keys are distributed uniformly based on the high bits in parallel. We build one hash table for each light bucket.

o For queries, we first look up the hash table for heavy keys. If the key is not found, we then look up the corresponding light-
bucket hash table.

o The hash table is implemented by linear-probing.

e Runtime optimizations

o Dynamic join order selection: we greedily choose the pair of tables whose product of row counts is minimized.

o Dynamic build: the smaller table is always chosen as the build side to construct the hash table.

o Hash table caching: completed hash tables for large tables can be cached and reused in subsequent joins on the same key,
avoiding redundant build costs.

Step 1: Take samples (boxed), detect heavy keys, Input{ 6 |4 0|4(8|2|6 479|211 5 15/4|13 10 9|4 (14 5|9 |11|6| 9
assign bucket ids
Samples: EI*?’ *1 EI*Z EI*Z *1 heavy bucket heavy bucket heavy bucket light bucket light bucket light bucket light bucket
key 4 key 6 key 9 keys 0-3 keys 4-7 keys 8-11 keys 12-15

4 light buckets: (highest two bits) 00, 01, 10, 11
3 heavy buckets: for 4, 6, 9

Step 2: Distribute records to corresponding buckets 416 E 1|3 21 [Of2[[7]>[>[]8]11 1O|11 15|13 14

Multi-Thread Parallelism

e \Work-Steal Scheduler i e Parallel primitives:

o parallel-for
= Simple application: parallelize any for-loop
= Adaptive granularity: adaptively adjust task size fqr
high-performance on general machines

ot e Fach worker maintains a deque for tasks
cx
® e Fach worker supports:

o spaws. pushes a task to the bottom of deque

o get_task: " .
O
« if the deque is not empty, it pops from scan (prefix sum), interger sort, ...
the bottom e Parallel resources allocator
m f the deque is empty, it steals a task by o Allocate thread pool with size #cores/#cores*2
popping from the top of another deque o Allocate memory pool for intermediate results of

parallel functions

References

[1] Dong, Xiaojun, Laxman Dhulipala, Yan Gu, and Yihan Sun. "Parallel integer sort: Theory and practice.”" In Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, pp. 301-315. 2024.
[2] Blelloch, Guy E., Daniel Anderson, and Laxman Dhulipala. "ParlayLib-a toolkit for parallel algorithms on shared-memory multicore machines." In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 507-509. 2020.

