
A1

A4

A5

Work-Steal Scheduler

A2

A3

P2

ge
t_
ta
sk

Building the hash table: heavy/light Key partitioning via parallel integer-sort
Heavy key identification: by sampling the keys and counting their frequencies, we identify heavy keys that appear more often
than a dynamic threshold.
For heavy keys, we use a hash table to store them with their indices.
Light keys are distributed uniformly based on the high bits in parallel. We build one hash table for each light bucket.
For queries, we first look up the hash table for heavy keys. If the key is not found, we then look up the corresponding light-
bucket hash table.
The hash table is implemented by linear-probing.

Runtime optimizations
Dynamic join order selection: we greedily choose the pair of tables whose product of row counts is minimized.
Dynamic build: the smaller table is always chosen as the build side to construct the hash table.
Hash table caching: completed hash tables for large tables can be cached and reused in subsequent joins on the same key,
avoiding redundant build costs.

SIGMOD 2025 Programming Contest – Team JobSeeking
Xiangyun Ding Letong Wang

Overview

Skew-Aware Parallel Hash Join

Input/Output

Multi-Thread Parallelism

References

Parallel primitives:

P1 P3

Each worker maintains a deque for tasks
Each worker supports:

sp
aw

s

get_task

spaws: pushes a task to the bottom of deque
get_task:

if the deque is not empty, it pops from
the bottom
if the deque is empty, it steals a task by
popping from the top of another deque

Parallel resources allocator
Allocate thread pool with size #cores/#cores*2
Allocate memory pool for intermediate results of
parallel functions

parallel-for
Simple application: parallelize any for-loop
Adaptive granularity: adaptively adjust task size for
high-performance on general machines

scan (prefix sum), interger sort, ...

Input Data Format
ColumnarTable -> Column -> Page
A tree structure for join order

Parallel Column Read
Parallel prefix sum: we first perform a parallel scan over pages
to sum up the number of rows, which gives each thread the
precise starting offset in the array.
I/O cache: a column cache, keyed by a hash of the column's
page content, stores pointers to already-read columns. This
cache is crucial for performance.

Two-Phase Parallel Writing
Counting Phase: Determine the number of pages required for
each partition of the output.
Writing Phase: Allocate memory for pages, then format and
write data partitions into the appropriate pages in parallel.

Our team
Team name: JobSeeking, from University of
California, Riverside
Final result: 5'th place!
We presents a high-performance, multi-threaded
query engine designed for the SIGMOD 2025
Programming Contest.

Key techniques
A work-stealing scheduler for shared-memory
multi-core parallelism
Highly parallelized I/O modules for rapid data
ingestion and emission
Skew-aware parallel hash join algorithm based
on parallel integer-sort
Custom memory allocators

Input 6 4 0 4 8 2 6 4 7 9 11 5 15 4 13 10 9 4 14 5 9 11 6 9

Samples: 74 2 6 9

4 light buckets: (highest two bits) 00, 01, 10, 11
3 heavy buckets: for 4, 6, 9

3 heavy bucket
key 4

4 4 4 4 4 6 6 6 9 9 9 9 0 2 7 5 5 8 11 10 11 15 13 14

 heavy bucket
key 6

 heavy bucket
key 9

 light bucket
keys 0-3

 light bucket
keys 4-7

 light bucket
keys 8-11

 light bucket
keys 12-15

*3 *1 *2 *2 *1

Step 1: Take samples (boxed), detect heavy keys,
assign bucket ids

Step 2: Distribute records to corresponding buckets

[1] Dong, Xiaojun, Laxman Dhulipala, Yan Gu, and Yihan Sun. "Parallel integer sort: Theory and practice." In Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, pp. 301-315. 2024.
[2] Blelloch, Guy E., Daniel Anderson, and Laxman Dhulipala. "ParlayLib-a toolkit for parallel algorithms on shared-memory multicore machines." In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 507-509. 2020.

[1]

[2]

