
• Concurrent Hash Join:
1. Parallel Build & Probe: All threads concurrently build

and probe a shared hash table on partitioned data.
2. Lock-Free Build: Entries are prepared thread-locally,

then inserted via atomic Compare-and-Swap (CAS).
3. Pointer-as-Bloom-Filter: The first 16 bits of a hash

chain‘s head pointer serve as a mini bloom filter to
accelerate key existence checks.

ACM SIGMOD Programming Contest 2025
Team Kirara (Runner-up): Liming Xiang1, Jing Feng1, Yibo Shao1, Yongze Yu2, Jiaxi Hou1

Advisor: Hongchao Qin1 Contact: hcqin@bit.edu.cn
1 Beijing Institute of Technology, China; 2 Xidian University, China;

Contest Overview
• Task: Implement a high-performance, in-memory join

pipeline executor across diverse hardware architectures.
• Dataset: 983 queries derived from from the Join Order

Benchmark (JOB) over the IMDB dataset.
• Hardware: Evaluated on 8 diverse server architectures,

including AMD, ARM, IBM, and Intel.

System Architecture
Our engine adopts a parallel, pull-based, vectorized execution
model.
• Vectorized Volcano Model: Operators pull columnar

batches from their children, creating a demand-driven
pipeline.

• Parallel Execution: A thread pool executes multiple
instances of the query plan. A shared state manager
coordinates atomic task claiming for operators.

• Delayed Materialization: Scan operator pass the references
to original data instead of copying tuples. Materialization is
deferred until required by operators like Join.

Core Optimization Techniques

Results

…

…Thread 1

�1 �1

��1
�1

(��)�1

�

Thread 2

�2 �2

��2
�2

(��)�2

�

Thread n

�� ��

���
��

(��)��

�Row IDs

Barrier

Hash Join

Dense Column Buffer
• Subtree Caching: Avoids re-computation by caching sub-

plan results. Identical subtrees are detected via a hash
fingerprint of their structure and data samples.

• High-Performance Memory Pool: A global pool serves
thread-local arenas for contention-free allocation. Memory
is allocated via a simple pointer bump.

• Adaptive Join Strategy: For trivial cases like a single-row
build side, the engine bypasses the hash join in favor of a
lightweight Nested-Loop Join.

• SIMD Intrinsics: Enables high-performance vectorization
through Clang's Extended Vectors, which automatically
generate optimal, platform-specific SIMD code.

• Dynamic Parallelism Scaling: The optimal degree of
parallelism is decided heuristically based on the input data
size, balancing throughput against coordination overhead.

• Achieved 2nd place with a geometric mean runtime of
7.03s across 983 queries on 8 diverse hardware platforms.

• Performance profiling revealed that the primary bottleneck
is cache misses during the probe phase of our hash join,
particularly for joins with large build-sides.

References:
Leis, Viktor, et al. "Morsel-driven parallelism: a NUMA-aware query evaluation framework for the many-core age." 2014.
Kersten, Timo, et al. "Everything you always wanted to know about compiled and vectorized queries but were afraid to ask." 2018.
Bandle, Maximilian, Jana Giceva, and Thomas Neumann. "To partition, or not to partition, that is the join question in a real system." 2021.

Build Phase Probe Phase

Thread 1 Thread n

CAS
Insert

…

…

Entry

Entry

Ptr Shared
Hash
Table

…

Thread 1 Thread n

…

Chain Head PointerMini Bloom Filter
16 Bit 48 Bit

Data

SIMD
Probe

Entry

Entry

Ptr

Entry

Entry

Ptr

Entry

Entry

…
Entry

Entry

…
Row

Row

…
Row

Row

…

AMD ARM IBM Intel
Geo. Mean

EPYC 7F72 EPYC 7343 Ampere Altra
Max

NVIDIA
GH200 Power8 Power10 Xeon E7-

4880
Xeon

Platinum

6.86 8.79 6.95 2.62 10.42 7.33 14.5 4.88 7.03

Benchmark Results (s)

