
• Concurrent Hash Join: 
1. Parallel Build & Probe: All threads concurrently build 

and probe a shared hash table on partitioned data.
2. Lock-Free Build: Entries are prepared thread-locally, 

then inserted via atomic Compare-and-Swap (CAS).
3. Pointer-as-Bloom-Filter: The first 16 bits of a hash 

chain‘s head pointer serve as a mini bloom filter to 
accelerate key existence checks.
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Contest Overview
• Task: Implement a high-performance, in-memory join 

pipeline executor across diverse hardware architectures.
• Dataset:  983 queries derived from from the Join Order 

Benchmark (JOB) over the IMDB dataset.
• Hardware: Evaluated on 8 diverse server architectures, 

including AMD, ARM, IBM, and Intel.

System Architecture
Our engine adopts a parallel, pull-based, vectorized execution 
model.
• Vectorized Volcano Model: Operators pull columnar 

batches from their children, creating a demand-driven 
pipeline.

• Parallel Execution: A thread pool executes multiple 
instances of the query plan. A shared state manager 
coordinates atomic task claiming for operators.

• Delayed Materialization: Scan operator pass the references 
to original data instead of copying tuples. Materialization is 
deferred until required by operators like Join.

Core Optimization Techniques
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• Subtree Caching: Avoids re-computation by caching sub-

plan results. Identical subtrees are detected via a hash 
fingerprint of their structure and data samples.

• High-Performance Memory Pool: A global pool serves 
thread-local arenas for contention-free allocation. Memory 
is allocated via a simple pointer bump.

• Adaptive Join Strategy: For trivial cases like a single-row 
build side, the engine bypasses the hash join in favor of a 
lightweight Nested-Loop Join.

• SIMD Intrinsics: Enables high-performance vectorization 
through Clang's Extended Vectors, which automatically 
generate optimal, platform-specific SIMD code.

• Dynamic Parallelism Scaling: The optimal degree of 
parallelism is decided heuristically based on the input data 
size, balancing throughput against coordination overhead.

• Achieved 2nd place with a geometric mean runtime of 
7.03s across 983 queries on 8 diverse hardware platforms.

• Performance profiling revealed that the primary bottleneck 
is cache misses during the probe phase of our hash join, 
particularly for joins with large build-sides.
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