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Summary

● Α cache-efficient, multi-threaded, lock-free join 
pipeline  implementation utilizing a memory-efficient 
hash table optimized for joins.
● 630x speedup over the reference solution!

1. Loading and Preprocessing

● Classify columns as join fields, output-only attributes or unused.
● Vast majority of pagenated columns have no null values and can be 
accessed in place in constant time with a single division. 
● Serial access can eliminate the division from the hot path.
● Copy remaining useful columns in contiguous arrays to enable 
random access. 
● Lazily copy Strings only when needed in the result.
● Lazy-load output-only columns in the background to start join 
execution early. 
● 99+% of columns are never loaded or get processed in the 
background, approximating a zero-copy solution!

3. Join Data Flow & Materialization

● Late Materialization to eliminate unnecessary data copies and reduce cache pollution.

●  Each join materializes the column needed for the next join in the pipeline to improve memory 
access patterns.

● Joins at the root of the tree materialize the final output.

4. Parallel Data Processing

● Priority-Based Task Queue that dynamically assigns tasks on available hardware threads.

● Prioritize tasks that enable processing of interdependent joins.

● Morsel-driven Parallelism[2] : break down heavier jobs into self-contained tasks, each 
responsible for independently processing a smaller chunk of the data.

● Lock-free chunk feeder mechanism to efficiently handle skeW: tasks that finish early can 
dynamically “steal” pages from siblings to balance workload.

● Each task independently produces paginated results and deposits them in dedicated per-
worker slots without any synchronization cost.

● Dynamic Job Batching for very small tasks to reduce overhead.

● Properly align concurrently accessed data structures to eliminate false sharing.

5. Pipeline

● Chunk and immediately forward intermediate results so the next join can also 
progress while the data are still hot in the cache.
● Schedule further processing of the data to the same hardware thread that 
produced it to optimize cache efficiency.
● Lock-free pipeline implemented with atomic instructions to minimize 
synchronization overhead and enable finer granularity tasks.
● Every completed task executes part of the pipeline control logic - appropriately 
advancing pipeline state and kickstarting tasks for the next stages or joins.

Task Overview

● Develop an efficient, in-memory join pipeline 
executor delivering high performance across a wide 
range of hardware architectures and configurations.

● Evaluated on anonymized data and queries sampled 
from the J.O.B. (IMDB Dataset).

● Input Data provided in memory as column-store, 
paginated tables. 

● Optimized Join Plan provided by PostgreSQL.

● Joins only on Integers, with Doubles and Strings 
also appearing in the results.

2. Unchained Hash Table

● Hash Table optimized for joins[1].
● Distinct phases for building and probing.
● Partition data among workers to parallelize building.
● All the entries of the table lie in a single large 
contiguous block, massively improving cache locality. 
● Use of CRC hardware instruction for quick hashing 
with adequate collision resistance.
● Bloom Filter in the lower 16-bits of the directory pointer.
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