
Team O.P.T.

A Lock-Free Cache-Aware Pipeline for High Throughput Joins

Want more?

HELLENIC REPUBLIC

National and Kapodistrian
University of Athens

National and
Kapodistrian
University of
Athens

National and
Kapodistrian
University of
Athens

HELLENIC REPUBLIC

National and Kapodistrian
University of Athens

Yannis Xiros, Zisis Vakras, Alexandros Kostas - Team O.P.T.
Department of Informatics & Telecommunications, University of Athens, Greece

MaDgIK Lab: www.madgik.di.uoa.gr

Summary

● Α cache-efficient, multi-threaded, lock-free join
pipeline implementation utilizing a memory-efficient
hash table optimized for joins.
● 630x speedup over the reference solution!

1. Loading and Preprocessing

● Classify columns as join fields, output-only attributes or unused.
● Vast majority of pagenated columns have no null values and can be
accessed in place in constant time with a single division.
● Serial access can eliminate the division from the hot path.
● Copy remaining useful columns in contiguous arrays to enable
random access.
● Lazily copy Strings only when needed in the result.
● Lazy-load output-only columns in the background to start join
execution early.
● 99+% of columns are never loaded or get processed in the
background, approximating a zero-copy solution!

3. Join Data Flow & Materialization

● Late Materialization to eliminate unnecessary data copies and reduce cache pollution.

● Each join materializes the column needed for the next join in the pipeline to improve memory
access patterns.

● Joins at the root of the tree materialize the final output.

4. Parallel Data Processing

● Priority-Based Task Queue that dynamically assigns tasks on available hardware threads.

● Prioritize tasks that enable processing of interdependent joins.

● Morsel-driven Parallelism[2] : break down heavier jobs into self-contained tasks, each
responsible for independently processing a smaller chunk of the data.

● Lock-free chunk feeder mechanism to efficiently handle skeW: tasks that finish early can
dynamically “steal” pages from siblings to balance workload.

● Each task independently produces paginated results and deposits them in dedicated per-
worker slots without any synchronization cost.

● Dynamic Job Batching for very small tasks to reduce overhead.

● Properly align concurrently accessed data structures to eliminate false sharing.

5. Pipeline

● Chunk and immediately forward intermediate results so the next join can also
progress while the data are still hot in the cache.
● Schedule further processing of the data to the same hardware thread that
produced it to optimize cache efficiency.
● Lock-free pipeline implemented with atomic instructions to minimize
synchronization overhead and enable finer granularity tasks.
● Every completed task executes part of the pipeline control logic - appropriately
advancing pipeline state and kickstarting tasks for the next stages or joins.

Task Overview

● Develop an efficient, in-memory join pipeline
executor delivering high performance across a wide
range of hardware architectures and configurations.

● Evaluated on anonymized data and queries sampled
from the J.O.B. (IMDB Dataset).

● Input Data provided in memory as column-store,
paginated tables.

● Optimized Join Plan provided by PostgreSQL.

● Joins only on Integers, with Doubles and Strings
also appearing in the results.

2. Unchained Hash Table

● Hash Table optimized for joins[1].
● Distinct phases for building and probing.
● Partition data among workers to parallelize building.
● All the entries of the table lie in a single large
contiguous block, massively improving cache locality.
● Use of CRC hardware instruction for quick hashing
with adequate collision resistance.
● Bloom Filter in the lower 16-bits of the directory pointer.

Acknowledgements & References

We would like to sincerely thank Stefanos Stamatis for his constant guidance,
feedback and support during the entire Contest. We are also grateful to Yannis
Foufoulas, Theofilos Mailis and Professor Yannis Ioannidis of the MaDgIK group
for their valuable insights and discussions.
__
[1] Birler, Altan, et al. “Simple, Efficient, and Robust Hash Tables for Join Processing.”
Proceedings of the 20th international workshop on data management on new hardware.
2024.

[2] Leis, Viktor, et al. “Morsel-Driven Parallelism: a NUMA-Aware Query Evaluation
Framework for the Many-Core Age.” Proceedings of the 2014 ACM SIGMOD international
conference on Management of data. 2014.

 SIGMOD 2 025 Programmi ng Contest

Build tasks

DEFAULT PARTITIONING BUILDING COLUMN
LOAD

JOINING

build-side
tuples

Hash TablePartitioning Tasks Background Loading Tasks

Result-only
data to next

join in the
pipe line

probe-side
tuples

all build

data arrived

all partitioning

tasks done

build tasks

done

all columns

loaded

from previous
join in the
pipe line

*only for top-level join

34

Storage
Directory

Filter

Probe Build

1

2

3

4

Join

2
1

Index Directory with CRC hash

Check Bloom Filter

Follow Directory pointer to start of data

Find matching tuples in bucket

