What Works and What Does Not:

A Winning Strategy for Join Query Execution

Altan Birler, Tobias Schmidt, Stefan Lehner, Florian Drescher, Maximilian Rieger, Simon Ellmann, Maximilian Reif, Adrian Riedl
Team (No) SortMergeJoins

Goal

Execute a join query on columnar data as fast as possible.

Challenge

» a-acyclic equi-joins, PostgreSQL query plans
Every query processes fresh input data, no statistics

Variable length text data

>
» Bespoke input format
>
>

IMDB dataset small for modern machines, overheads matter

Planning
» Statistics based on index-based join sampling !Leis tal 20171

» PP based jOin Ordering [Moerkotte & Neumann 2006
> Incremental query planing [Neumann & Galindo-Legaria 2013]

Table scan

» Fast scans and filtering using bitmaps and vectorization
> BlO om ﬁlterS |Birler et al. 2024, Schmidt et al. 2021]

Join pipeline

» (Pre-)Compiled join pipelines Neumann 20111

» Chaining hash table with partitioned loads !Pirler etal 2024
» Eager aggregation of duplicates Pirler etal 2024]

Infrastructure

» Bump memory allocator

» Efficient scheduling of small and large tasks
» Continuous profiling with Perfetto

» Random test query generation for robustness

Source Code:
github.com/umbra-db/contest-sigmod2025

NN

(1) Build Query Graph

predicates as a graph, relations as nodes

(3) Vectorized Table Scan

R1.X = R2.X
R2.Y = R4.Y
R3.Z = R5.Z
R4.K = R5.K
Query Columnar Layout
predicates & joins integer & text
Approach
L. : X
Keep it simple, keep it fast / \N\
X X

(2) Optimize Join Plan

pick the next cheapest pipeline

for tuple 4m table:

1f not tuple.key <n probeHt:

continue

for partner in probeHt[tuple.key]:

8

targetHt.insert (tuple + partner)

(4) Run Join Pipeline

filter early, read and process less probe joins and build next hash table

A

(5) Build Join Filters

prepare for future scans

NN

(6) Repeat

update statistics ¢ continue with (1)

Evaluation

Execution Time Improvement with Optimizations

Competitor performance shown as reference lines
Each optimization step shows speedup vs. previous

3 repeated executions of JOB queries on prefiltered base
tables measured on AMD EPYC 9454P (Linux 6.11.0-26).

22315 ms
1288 \ Findings
R DuckDB (6200 :
I e e i wHRREERY . The general-purpose database system Umbra is roughly as
= \
2 305 fast as the second-best solution, even when query-
e \ o o o . .
T e BScaser tmbrer (189%-m compilation and data-decompression times are included.
T e 1205 s ~ ~1:Ox faster 1 faster firara (1516ms)—» A simple yet eficient hash table combined with compiled
g 08 @& << S . .
2 769 ms 76 me = ~1Tx Sstar —txfaster join pipelines already provides a strong baseline.
0.4s ~
455 445 ~ - 1.7x faster . . o
ms SR fastr » 'The execution is memory bound. Early filtering helps as
0.2s 267 ms — .
216 ms reading less data makes us faster. SIMD does not make a
e @{po% S &S & difference as we are not compute bound.
S S B > S X > N .
¥ & X & & & & » PostgreSQL query plans are okay but not great. Adaptive
@0 \iﬁ 0& @\Q .4@\0
) o . S5 o query optimization improves runtime by 2x.
X X Mo

Optimization Step

